1 to 10 of 4,749 Results
Oct 1, 2025
Shams Eddin, Mohamad Hakam; Zhang, Yikui; Kollet, Stefan; Gall, Juergen, 2025, "RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]", https://doi.org/10.60507/FK2/T8QYWE, bonndata, V1
This is the dataset used in the RiverMamba paper (see https://arxiv.org/abs/2505.22535). The aim of the RiverMamba project is to develop a deep learning model that is pretrained with long-term reanalysis data and fine-tuned on observations to forecast global river discharge and floods up to 7 days lead time on a 0.05° grid. The dataset includes the... |
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
Plain Text - 18.6 KB -
MD5: dc0838e648ae7b059a25152e9e5d1a1a
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
7Z Archive - 14.6 GB -
MD5: fe61beed8f5f897435ba08ab5ff04633
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
JSON - 7.8 KB -
MD5: 1062e618aca9f0aa5ac0e545d2daf871
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
Unknown - 50.0 GB -
MD5: 0e9212c75bfd6a0b32f7f87385283736
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
Unknown - 50.0 GB -
MD5: 90f759a665ae9b5f104ee37f3c59c57a
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
Unknown - 38.9 GB -
MD5: bab0c2e625d59f2f0e5f9ef64cb97427
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
Unknown - 50.0 GB -
MD5: 0ed5322ca41ab09f8a28f96d6f95fff9
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
Unknown - 50.0 GB -
MD5: c936cb42a79d3b30c93ae812376bdee2
|
Oct 1, 2025 -
RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]
Unknown - 40.3 GB -
MD5: d19476204fb49126c9843701cdfddb40
|