11 to 20 of 1,822 Results
application/pkix-attr-cert - 4.0 GB -
MD5: 93338ef9591e503e1dec8da6b604e2f9
|
Unknown - 4.0 GB -
MD5: 6e19dd2a7a0444d63ee08e473a84301d
|
Unknown - 4.0 GB -
MD5: 74b70f880f50c033bf2971013079144a
|
Unknown - 4.0 GB -
MD5: 252b920bac08bc0930a21a770569a738
|
image/x-applix-graphics - 3.5 GB -
MD5: abd54e3866adab851cb575d1d3a58d36
|
application/x-yaml - 280 B -
MD5: ed212b2055b08b635f263320a42dec15
|
Markdown Text - 2.9 KB -
MD5: aa1af827322e4ae5dc3f0dc668af7562
|
Markdown Text - 5.1 KB -
MD5: 30831e1ba9bab6fbaa91fd347ce5d855
|
application/x-yaml - 1.6 KB -
MD5: dcf653a6d147f9c6eb577b7f65ce000a
|
Oct 1, 2025
Shams Eddin, Mohamad Hakam; Zhang, Yikui; Kollet, Stefan; Gall, Juergen, 2025, "RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting [data set]", https://doi.org/10.60507/FK2/T8QYWE, bonndata, V1
This is the dataset used in the RiverMamba paper (see https://arxiv.org/abs/2505.22535). The aim of the RiverMamba project is to develop a deep learning model that is pretrained with long-term reanalysis data and fine-tuned on observations to forecast global river discharge and floods up to 7 days lead time on a 0.05° grid. The dataset includes the... |