561 to 570 of 3,056 Results
Jun 4, 2024 -
Episodic ABF analysis
Unknown - 0 B -
MD5: d41d8cd98f00b204e9800998ecf8427e
|
Jun 4, 2024 -
Episodic ABF analysis
Unknown - 49.2 KB -
MD5: 95cf5ce04d7ed2cda4374e9d6f890689
|
Jun 4, 2024 -
Episodic ABF analysis
Unknown - 397.1 KB -
MD5: 171086bec822dda963e56194200db98d
|
Jun 4, 2024 -
Episodic ABF analysis
Windows Executable - 5.9 MB -
MD5: 398ca5a17449c89153a97dd310c0f790
|
Jun 4, 2024 -
Episodic ABF analysis
Adobe PDF - 1.7 MB -
MD5: e14db269bbe02a99603956ad702174ba
|
Jun 4, 2024 -
Episodic ABF analysis
Plain Text - 1.5 KB -
MD5: 4895e2c7a9d7f8849f2948f05d10c883
|
Jun 4, 2024 -
Episodic ABF analysis
Markdown Text - 1.8 KB -
MD5: 872e304975be0cb1a59846e84d0d46eb
|
Jun 4, 2024 -
Episodic ABF analysis
MATLAB Source Code - 56.6 KB -
MD5: 5a3fb8fe675fb66ed8f0b655395c065c
|
Jun 4, 2024 -
Episodic ABF analysis
Plain Text - 1.3 KB -
MD5: 9bef665dd1f26f9d528959d20a0bdc68
|
May 24, 2024 - Bonn Mathematics
Hougardy, Stefan, 2024, "Hard to Solve Instances of the Euclidean Traveling Salesman Problem", https://doi.org/10.60507/FK2/ESZ1QZ, bonndata, V1
In our paper Hard to Solve Instances of the Euclidean Traveling Salesman Problem (Mathematical Programming Computation (2021) 13:51-74) we construct a family of Euclidean instances for the Traveling Salesman Problem for which the integrality ratio of the subtour LP converges to 4... |