BUP-ST20: Weakly Labelled Spatial Temporal Sweet Pepper Data (doi:10.60507/FK2/NUMVO1)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link)

Document Description

Citation

Title:

BUP-ST20: Weakly Labelled Spatial Temporal Sweet Pepper Data

Identification Number:

doi:10.60507/FK2/NUMVO1

Distributor:

bonndata

Date of Distribution:

2025-10-06

Version:

1

Bibliographic Citation:

Guclu, Esra; Halstead, Michael, 2025, "BUP-ST20: Weakly Labelled Spatial Temporal Sweet Pepper Data", https://doi.org/10.60507/FK2/NUMVO1, bonndata, V1

Study Description

Citation

Title:

BUP-ST20: Weakly Labelled Spatial Temporal Sweet Pepper Data

Identification Number:

doi:10.60507/FK2/NUMVO1

Authoring Entity:

Guclu, Esra (University of Bonn)

Halstead, Michael (University of Bonn)

Other identifications and acknowledgements:

Agricultural Robotics Group

Other identifications and acknowledgements:

Guclu Esra

Other identifications and acknowledgements:

Halstead Michael

Other identifications and acknowledgements:

McCool Chris

Other identifications and acknowledgements:

Denman Simon

Distributor:

bonndata

Access Authority:

Güclü, Esra

Depositor:

Güclü, Esra

Date of Deposit:

2025-09-29

Date of Distribution:

2025-09-29

Holdings Information:

https://doi.org/10.60507/FK2/NUMVO1

Study Scope

Keywords:

Agricultural Sciences

Abstract:

Accurate monitoring of crop phenotypic traits is essential for efficient farm management and automation in agriculture. Multi-object tracking (MOT) and video instance segmentation (VIS) offer promising approaches to enhance agricultural robotic vision systems, yet a major limitation is the scarcity of high-quality spatial-temporal datasets. We introduce BUP-ST20, a novel weakly labelled spatial-temporal dataset for sweet pepper tracking and segmentation captured on a robotic platform. BUP-ST20 contains 16,240 images from 275 sequences, each with bounding boxes, instance segmentation masks, and temporal identities.The dataset has weakly labelled training and validation sets, while the evaluation set includes 3810 frames with hand-labelled ground truth annotations.

Date of Collection:

2020-09-24-2020-10-01

Kind of Data:

Images

Kind of Data:

Numerical

Kind of Data:

Spreadsheet

Kind of Data:

Structured

Kind of Data:

Qualitative

Methodology and Processing

Sources Statement

Data Access

Notes:

<a href="http://creativecommons.org/licenses/by/4.0">CC BY 4.0</a>

Other Study Description Materials

Related Publications

Citation

Title:

Guclu E, Halstead M, Denman S, McCool C. Weakly labelled spatial-temporal sweet pepper data: Enabling higher quality detection, segmentation, and tracking. The International Journal of Robotics Research. 2025;0(0). doi:10.1177/02783649251379093

Identification Number:

10.1177/02783649251379093

Bibliographic Citation:

Guclu E, Halstead M, Denman S, McCool C. Weakly labelled spatial-temporal sweet pepper data: Enabling higher quality detection, segmentation, and tracking. The International Journal of Robotics Research. 2025;0(0). doi:10.1177/02783649251379093

Other Study-Related Materials

Label:

bupst20_annotations.tar.gz

Notes:

application/gzip

Other Study-Related Materials

Label:

bupst20_depth.tar.gz.aa

Notes:

audio/x-pn-audibleaudio

Other Study-Related Materials

Label:

bupst20_depth.tar.gz.ab

Notes:

application/octet-stream

Other Study-Related Materials

Label:

bupst20_odometry.tar.gz

Notes:

application/gzip

Other Study-Related Materials

Label:

bupst20_rgb.tar.gz.aa

Notes:

audio/x-pn-audibleaudio

Other Study-Related Materials

Label:

bupst20_rgb.tar.gz.ab

Notes:

application/octet-stream

Other Study-Related Materials

Label:

bupst20_rgb.tar.gz.ac

Notes:

application/pkix-attr-cert

Other Study-Related Materials

Label:

bupst20_rgb.tar.gz.ad

Notes:

application/octet-stream

Other Study-Related Materials

Label:

bupst20_rgb.tar.gz.ae

Notes:

application/octet-stream

Other Study-Related Materials

Label:

bupst20_rgb.tar.gz.af

Notes:

application/octet-stream

Other Study-Related Materials

Label:

bupst20_rgb.tar.gz.ag

Notes:

image/x-applix-graphics

Other Study-Related Materials

Label:

cam_params.yaml

Notes:

application/x-yaml

Other Study-Related Materials

Label:

dataset_structure.md

Notes:

text/markdown

Other Study-Related Materials

Label:

how_to_use_BUPST20.md

Notes:

text/markdown

Other Study-Related Materials

Label:

ReadMe.txt

Notes:

text/plain

Other Study-Related Materials

Label:

train_valid_eval_splits.yaml

Notes:

application/x-yaml